Technical Documentation
XOMOX® XLD Fully Lined Butterfly Valve
The XOMOX® lined butterfly valve is available in DIN under the term XLD12 as wafer version and XLD22 as lug version. The ASME types are termed XLD11 as wafer version and XLD21 as lug version, and in JIS as XLD13 wafer version and XLD23 lug version.

For XOMOX® Lined Butterfly Valves bi-directional flow is possible at max. operating pressure. Since the valve port corresponds to the piping diameter, a high flow capacity is guaranteed.

The seamless one piece molded liner together with the underlying elastic O-ring provides trouble- and maintenance-free operation. It covers the lower shaft completely and renders an additional sealing to atmosphere unnecessarily.

The liner extends up the shaft to above the secondary seal. This sealing prevents leakage to atmosphere. The body seal ring is designed to provide a 360° sealing for in-line shutoff and at the upper and lower shaft to act as primary seal to atmosphere.

A further special feature is the one-piece disc consisting of a metallic core (disc/shaft) with a homogeneous non-porous plastic coating standing up to the secondary external seals.

All these features combine to make the XOMOX® lined butterfly valve the solution for tight shutoff and corrosion resistance and represent an advance on all previously available products of this type.

Each valve is 100% spark tested with 20000 volts in accordance with API 598 specification to ensure the absence of pin holes and defects.

Key Benefits

- Superior In-Line Sealing– Viton ring activated PFA liner is more flexible than larger sintered PTFE liners which allows for improved inline sealing, protecting equipment from internal corrosion related to media leakage.

- Longer Valve Life– PFA lasts 20% longer than PTFE due to abrasion resistance helps to improve life of inline seal.

- PFA lining more robust in thermal cycles and high temperature applications (>180°C) than PTFE lining allowing the PFA lined disk to last longer keeping the chemical plant operating longer.

Scope of Supply

Materials

- **Body:** Ductile iron EN-JS1049/ASTM A395
- **Body liner:** PFA
- **Disc:** 2”-12”: Ductile iron EN-JS1049 / ASTM A395 PFA lined & SS PFA lined, 14”-24”: Fabricated Disc (A516 Gr. 70+ 1.4462/ F51/F60 SS Duplex Stem) PFA lined
- **Face to face** acc. to EN 558, basic column 20/ API 609 (except for 14”)

Operation

DN 50 / NPS 2 up to DN 150 / NPS 6 latching lever from DN 200 / NPS 8 with worm gear, pneumatic and electric actuators on request.

Tightness

The actual leakage rate to atmospheric pressure is less than 110-6 mbar . l/s of helium gas. Requirements according to TA-Luft specification will be accomplished.

Paint

Standard paint: Epoxy - primer and coating based on AY-PUR (Acryle-Polyuretane) Orange RAL 2009, FV7133 prevent external corrosion
Design Features

Type test approval VdTÜV-M229 for plants subject to inspection:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dampfkv</th>
<th>DruckbehV</th>
<th>Gas HL-V0</th>
<th>Vbf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>TRD</td>
<td>TRB/TRR</td>
<td>TRGL/DVGW</td>
<td>TrbF</td>
</tr>
</tbody>
</table>

Options:
- Chlorine application
- Oxygen application
- Disc in stainless steel or Titanium (without lining)
- O-ring Silicon
- Safety manual adjustable packing
- PFA antistatic lining
- PTFE Liner / PTFE lined disc from DN350 size onwards
- Other painting on request

XLD Pressure/Temperature Rating

All XLD in Vacuum Condition

Note: Max. differential operating pressure limited to maximum of 10bar for all sizes.

* XLD 13/23 10K UPTO DN500
* XLD 12/22 PN10 & 13/22 10K UP TO DN500*
* XLD 11/21 UP TO 24"

Options:
- Chlorine application
- Oxygen application
- Disc in stainless steel or Titanium (without lining)
- O-ring Silicon
- Safety manual adjustable packing
- PFA antistatic lining
- PTFE Liner / PTFE lined disc from DN350 size onwards
- Other painting on request
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Part</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Atmospheric seal</td>
<td>PTFE Teflon®</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Snap Ring</td>
<td>304 SS</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Thrust Collar</td>
<td>1.4408 / 1.4541 / 304 SS / 1.4571</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Washer Spring Set</td>
<td>17/7 PH</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Gland</td>
<td>1.4571</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>O-Ring</td>
<td>FKM</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Spacer</td>
<td>1.4571</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Body Top half</td>
<td>EN-JS1049/ASTM A395 PFA liner</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Body Bottom half</td>
<td>EN-JS1049/ASTM A395 PFA liner</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Body Seal Ring</td>
<td>FKM</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Liner</td>
<td>PFA</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Disc</td>
<td>DN 50-300: EN-JS1049/ASTM A395 or SS PFA lined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DN 350-600: Welded Disc (A516 Gr. 70+ 1.4462/ASTM A395 PFA lined</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>Nut</td>
<td>A4-70 (108/109, 808/809), A194 2H (008/009)</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Snap Ring</td>
<td>304 SS</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Split Sleeve</td>
<td>1.0904 A26</td>
</tr>
<tr>
<td>16</td>
<td>2/4</td>
<td>Washer</td>
<td>1.4301</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>Body Bolt</td>
<td>A4-70 (108/109, 808/809), A193 B7 (008/009)</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>Bolt</td>
<td>A4-70 (108/109, 808/809), A193 B7 (008/009)</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>Stuffing Box Flange</td>
<td>1.4408</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>Nut</td>
<td>A4-70 (108/109, 808/809), A194 2H (008/009)</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>Laminated Shim</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>Slotted Spring Pin</td>
<td>1.4310</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>OD Ring</td>
<td>304 SS</td>
</tr>
</tbody>
</table>

DN 50/2” – 300/12”

DN 350/14” – 600/24”
Sealing Principles

1. In-line seal – valve in closed position

2. In-line seal – valve in opening position

3. Secondary shaft seal

DN 50/2” – 300/12”

DN 350/14” – 600/24”
Flow Characteristics

Kv values in m³/h, Cv=1,156 Kv

<table>
<thead>
<tr>
<th>Angel of Aperture %</th>
<th>DN / NPS</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 / 2</td>
<td></td>
<td>0</td>
<td>0.62</td>
<td>2.6</td>
<td>12</td>
<td>30</td>
<td>65</td>
<td>95</td>
<td>135</td>
<td>165</td>
<td>170</td>
<td>180</td>
</tr>
<tr>
<td>80 / 3</td>
<td></td>
<td>0</td>
<td>0.82</td>
<td>3.6</td>
<td>144</td>
<td>38</td>
<td>70</td>
<td>112</td>
<td>166</td>
<td>212</td>
<td>228</td>
<td>233</td>
</tr>
<tr>
<td>100 / 4</td>
<td></td>
<td>0</td>
<td>1.5</td>
<td>5.8</td>
<td>22</td>
<td>55</td>
<td>102</td>
<td>177</td>
<td>296</td>
<td>408</td>
<td>464</td>
<td>486</td>
</tr>
<tr>
<td>125 / 5</td>
<td></td>
<td>0</td>
<td>4.6</td>
<td>13</td>
<td>40</td>
<td>92</td>
<td>164</td>
<td>267</td>
<td>413</td>
<td>564</td>
<td>698</td>
<td>790</td>
</tr>
<tr>
<td>150 / 6</td>
<td></td>
<td>0</td>
<td>12.12</td>
<td>31</td>
<td>82</td>
<td>183</td>
<td>296</td>
<td>415</td>
<td>595</td>
<td>834</td>
<td>1115</td>
<td>1445</td>
</tr>
<tr>
<td>200 / 8</td>
<td></td>
<td>0</td>
<td>18.4</td>
<td>44</td>
<td>130</td>
<td>280</td>
<td>435</td>
<td>640</td>
<td>910</td>
<td>1282</td>
<td>1705</td>
<td>2227</td>
</tr>
<tr>
<td>250 / 10</td>
<td></td>
<td>0</td>
<td>27.3</td>
<td>65</td>
<td>200</td>
<td>410</td>
<td>660</td>
<td>958</td>
<td>1345</td>
<td>1912</td>
<td>2550</td>
<td>3320</td>
</tr>
<tr>
<td>300 / 12</td>
<td></td>
<td>0</td>
<td>40.7</td>
<td>99</td>
<td>295</td>
<td>596</td>
<td>965</td>
<td>1396</td>
<td>1975</td>
<td>2827</td>
<td>3795</td>
<td>4908</td>
</tr>
<tr>
<td>350 / 14</td>
<td></td>
<td>0</td>
<td>68</td>
<td>216</td>
<td>413</td>
<td>720</td>
<td>1225</td>
<td>1944</td>
<td>2890</td>
<td>4104</td>
<td>5520</td>
<td>7200</td>
</tr>
<tr>
<td>400 / 16</td>
<td></td>
<td>0</td>
<td>90</td>
<td>268</td>
<td>518</td>
<td>895</td>
<td>1535</td>
<td>2416</td>
<td>3663</td>
<td>5100</td>
<td>6960</td>
<td>8950</td>
</tr>
<tr>
<td>450 / 18</td>
<td></td>
<td>0</td>
<td>116</td>
<td>340</td>
<td>660</td>
<td>1135</td>
<td>1934</td>
<td>3065</td>
<td>4610</td>
<td>6470</td>
<td>8810</td>
<td>13350</td>
</tr>
<tr>
<td>500 / 20</td>
<td></td>
<td>0</td>
<td>164</td>
<td>415</td>
<td>822</td>
<td>1390</td>
<td>2400</td>
<td>3750</td>
<td>5670</td>
<td>7925</td>
<td>10700</td>
<td>13900</td>
</tr>
<tr>
<td>600 / 24</td>
<td></td>
<td>0</td>
<td>231</td>
<td>570</td>
<td>1060</td>
<td>1900</td>
<td>3250</td>
<td>5130</td>
<td>7790</td>
<td>10830</td>
<td>14440</td>
<td>19000</td>
</tr>
</tbody>
</table>

DN65 NPS 2½ on request

Valve coefficients for process control: DN 50 – 200 / NPS 2 – 8

<table>
<thead>
<tr>
<th>Angel of Aperture</th>
<th>9°</th>
<th>18°</th>
<th>27°</th>
<th>36°</th>
<th>45°</th>
<th>54°</th>
<th>63°</th>
<th>72°</th>
<th>81°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of Aperture %</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>Recovery factor FL</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.81</td>
<td>0.73</td>
<td>0.67</td>
<td>0.61</td>
<td>0.59</td>
<td>0.55</td>
</tr>
<tr>
<td>Factor F₁²</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.66</td>
<td>0.53</td>
<td>0.45</td>
<td>0.37</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>Valve characteristic zₐ</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.43</td>
<td>0.37</td>
<td>0.33</td>
<td>0.28</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>Pressure differential ratio KT</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.61</td>
<td>0.55</td>
<td>0.45</td>
<td>0.38</td>
<td>0.31</td>
<td>0.29</td>
<td>0.25</td>
</tr>
<tr>
<td>Valve style modifier F₂</td>
<td>0.08</td>
<td>0.15</td>
<td>0.23</td>
<td>0.31</td>
<td>0.38</td>
<td>0.45</td>
<td>0.52</td>
<td>0.58</td>
<td>0.64</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Valve coefficients for process control: DN 250 – 600, NPS 10 – 24

<table>
<thead>
<tr>
<th>Angel of Aperture</th>
<th>9°</th>
<th>18°</th>
<th>27°</th>
<th>36°</th>
<th>45°</th>
<th>54°</th>
<th>63°</th>
<th>72°</th>
<th>81°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of Aperture %</td>
<td>0.10</td>
<td>0.20</td>
<td>0.30</td>
<td>0.40</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
<td>0.80</td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>Recovery factor FL</td>
<td>0.80</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
<td>0.78</td>
<td>0.67</td>
<td>0.56</td>
<td>0.51</td>
<td>0.48</td>
<td>0.42</td>
</tr>
<tr>
<td>Factor F₁²</td>
<td>0.64</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.61</td>
<td>0.45</td>
<td>0.31</td>
<td>0.26</td>
<td>0.23</td>
<td>0.18</td>
</tr>
<tr>
<td>Valve characteristic zₐ</td>
<td>0.43</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.41</td>
<td>0.33</td>
<td>0.25</td>
<td>0.22</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td>Pressure differential ratio KT</td>
<td>0.54</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.51</td>
<td>0.38</td>
<td>0.26</td>
<td>0.22</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>Valve style modifier F₂</td>
<td>0.08</td>
<td>0.15</td>
<td>0.23</td>
<td>0.31</td>
<td>0.38</td>
<td>0.45</td>
<td>0.52</td>
<td>0.58</td>
<td>0.64</td>
<td>0.70</td>
</tr>
</tbody>
</table>
In-Line Mounting Dimensions

Valve coefficients for process control: DN 50 – 600 / NPS 2 – 24

<table>
<thead>
<tr>
<th>DN</th>
<th>NPS</th>
<th>In-line mounting dimensions</th>
<th>Free space sectional area at 90° in cm²</th>
<th>ξ₁</th>
<th>Break-away torque in Nm</th>
<th>Maximal Allowable torque on stem in Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dimension L in mm</td>
<td>Chord Ø mm</td>
<td></td>
<td>*₁</td>
<td>*₂</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>8</td>
<td>29</td>
<td>10.6</td>
<td>3.2</td>
<td>35</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>16</td>
<td>62</td>
<td>24.7</td>
<td>2.4</td>
<td>35</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>25</td>
<td>88</td>
<td>51.8</td>
<td>0.85</td>
<td>50</td>
</tr>
<tr>
<td>125</td>
<td>5</td>
<td>37</td>
<td>114</td>
<td>89.2</td>
<td>0.72</td>
<td>62</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>49</td>
<td>141</td>
<td>138</td>
<td>0.45</td>
<td>94</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>72</td>
<td>193</td>
<td>255.2</td>
<td>0.53</td>
<td>209</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>93</td>
<td>245</td>
<td>411.3</td>
<td>0.58</td>
<td>242</td>
</tr>
<tr>
<td>300</td>
<td>12</td>
<td>113</td>
<td>294</td>
<td>610.6</td>
<td>0.55</td>
<td>308</td>
</tr>
<tr>
<td>350</td>
<td>14</td>
<td>124</td>
<td>325</td>
<td>709.5</td>
<td>0.45</td>
<td>900</td>
</tr>
<tr>
<td>400</td>
<td>16</td>
<td>144</td>
<td>375</td>
<td>923.3</td>
<td>0.50</td>
<td>1300</td>
</tr>
<tr>
<td>450</td>
<td>18</td>
<td>163</td>
<td>425</td>
<td>1201.1</td>
<td>0.50</td>
<td>1700</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
<td>181</td>
<td>475</td>
<td>1527.7</td>
<td>0.51</td>
<td>2700</td>
</tr>
<tr>
<td>600</td>
<td>24</td>
<td>218</td>
<td>570</td>
<td>2306.6</td>
<td>0.56</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DN65 NPS 21/2 on request</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*¹ Coefficient of resistance, acc. to theoretical pipe diameter (DN) and Kva (opening angle 90°)
*² Identical torque at opening and closing, running torque = 40% of break away torque
*³ Max. Permissible torque with Material EN-JS1049 up to DN300 & with 1.4462 SS from DN 350 onwards
Dimensions with Bare Shaft **DN 50-300, 2" - 12"**

Dimensions (mm) and Weight (kg)

<table>
<thead>
<tr>
<th>DN NPS</th>
<th>50</th>
<th>65</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>43</td>
<td>46</td>
<td>46</td>
<td>52</td>
<td>56</td>
<td>56</td>
<td>60</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>B</td>
<td>81</td>
<td>87</td>
<td>102</td>
<td>120</td>
<td>135</td>
<td>145</td>
<td>190</td>
<td>233</td>
<td>258</td>
</tr>
<tr>
<td>C</td>
<td>133</td>
<td>146</td>
<td>160</td>
<td>170</td>
<td>185</td>
<td>203</td>
<td>230</td>
<td>258</td>
<td>288</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>30</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>163</td>
<td>176</td>
<td>182</td>
<td>196</td>
<td>214</td>
<td>228</td>
<td>256</td>
<td>284</td>
<td>318</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ØG</td>
<td>100</td>
<td>128</td>
<td>127</td>
<td>153</td>
<td>184</td>
<td>212</td>
<td>265</td>
<td>324</td>
<td>374</td>
</tr>
<tr>
<td>J</td>
<td>119</td>
<td>135</td>
<td>138</td>
<td>154</td>
<td>166</td>
<td>180</td>
<td>210</td>
<td>231</td>
<td>266</td>
</tr>
<tr>
<td>I</td>
<td>168</td>
<td>175</td>
<td>223</td>
<td>267</td>
<td>295</td>
<td>321</td>
<td>394</td>
<td>462</td>
<td>552</td>
</tr>
<tr>
<td>ØK</td>
<td>15.9</td>
<td>15.9</td>
<td>15.9</td>
<td>15.9</td>
<td>15.9</td>
<td>25.4</td>
<td>31.8</td>
<td>31.8</td>
<td>31.8</td>
</tr>
<tr>
<td>SW</td>
<td>111</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
<td>17.5</td>
<td>20.6</td>
<td>20.6</td>
<td>20.6</td>
</tr>
<tr>
<td>L</td>
<td>25</td>
<td>25</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>M</td>
<td>M6</td>
<td>M6</td>
<td>M6</td>
<td>M6</td>
<td>M6</td>
<td>M8</td>
<td>M8</td>
<td>M8</td>
<td>M8</td>
</tr>
<tr>
<td>DIN ISO 5211</td>
<td>F07</td>
<td>F07</td>
<td>F07</td>
<td>F07</td>
<td>F07</td>
<td>F07</td>
<td>F10</td>
<td>F10</td>
<td>F10</td>
</tr>
<tr>
<td>ØP</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>125</td>
</tr>
<tr>
<td>ØR</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Weight</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>9.5</td>
<td>12.0</td>
<td>15.0</td>
<td>25.0</td>
<td>33.0</td>
<td>53.0</td>
</tr>
</tbody>
</table>
Dimensions with Bare Shaft DN 350 – 600, NPS 14 – 24

Dimensions (mm) and Weight (kg)

<table>
<thead>
<tr>
<th>DN NPS</th>
<th>350 14</th>
<th>400 16</th>
<th>450 18</th>
<th>500 20</th>
<th>600 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92</td>
<td>102</td>
<td>114</td>
<td>127</td>
<td>154</td>
</tr>
<tr>
<td>B</td>
<td>353</td>
<td>380</td>
<td>410</td>
<td>460</td>
<td>520</td>
</tr>
<tr>
<td>C</td>
<td>417</td>
<td>452</td>
<td>470</td>
<td>500</td>
<td>560</td>
</tr>
<tr>
<td>D</td>
<td>38</td>
<td>38</td>
<td>60</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>E</td>
<td>455</td>
<td>490</td>
<td>530</td>
<td>560</td>
<td>625</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ØG</td>
<td>415</td>
<td>480</td>
<td>530</td>
<td>580</td>
<td>684</td>
</tr>
<tr>
<td>J</td>
<td>576</td>
<td>640</td>
<td>676</td>
<td>740</td>
<td>880</td>
</tr>
<tr>
<td>I</td>
<td>345</td>
<td>380</td>
<td>393</td>
<td>423</td>
<td>468</td>
</tr>
<tr>
<td>ØK</td>
<td>36</td>
<td>36</td>
<td>48</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>SW</td>
<td>27</td>
<td>27</td>
<td>36</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>L</td>
<td>35</td>
<td>35</td>
<td>55</td>
<td>55</td>
<td>62</td>
</tr>
<tr>
<td>M</td>
<td>M8</td>
<td>M8</td>
<td>M12</td>
<td>M12</td>
<td>M12</td>
</tr>
</tbody>
</table>

Actuator Connection

<table>
<thead>
<tr>
<th>DIN ISO 5211</th>
<th>F14</th>
<th>F14</th>
<th>F16</th>
<th>F16</th>
<th>F16</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØP</td>
<td>140</td>
<td>140</td>
<td>165</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>ØR</td>
<td>18</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Weight</td>
<td>102</td>
<td>127</td>
<td>176</td>
<td>202</td>
<td>308</td>
</tr>
</tbody>
</table>
Flange Bolt Dimensions

Drilling DIN PN 10 (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>XLD 10/16 Wafer Style</th>
<th>XLD 22 Lug Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN 50</td>
<td>125 4 18</td>
<td>125 4 M16</td>
</tr>
<tr>
<td>DN 65</td>
<td>145 4 18</td>
<td>145 4 M16</td>
</tr>
<tr>
<td>DN 80</td>
<td>160 8 18 160 8 M16</td>
<td></td>
</tr>
<tr>
<td>DN 100</td>
<td>180 8 18 180 8 M16</td>
<td></td>
</tr>
<tr>
<td>DN 125</td>
<td>210 8 18 210 8 M16</td>
<td></td>
</tr>
<tr>
<td>DN 150</td>
<td>240 8 22 240 8 M20</td>
<td></td>
</tr>
<tr>
<td>DN 200</td>
<td>295 8/12 295 8/12 M20</td>
<td></td>
</tr>
<tr>
<td>DN 250</td>
<td>350/355 12 22/26 350/355 12 M20/24</td>
<td></td>
</tr>
<tr>
<td>DN 300</td>
<td>400/410 12 22/26 400/410 12 M20/24</td>
<td></td>
</tr>
<tr>
<td>DN 350</td>
<td>460/470 16 22/26 460/470 16 M20/24</td>
<td></td>
</tr>
<tr>
<td>DN 400</td>
<td>515/525 16 26/30 515/525 16 M24/27</td>
<td></td>
</tr>
<tr>
<td>DN 450</td>
<td>565/585 20 26/30 565/585 20 M24/27</td>
<td></td>
</tr>
<tr>
<td>DN 500</td>
<td>620 20 26 620 20 M24</td>
<td></td>
</tr>
<tr>
<td>DN 600</td>
<td>725 20 30 725 20 M27</td>
<td></td>
</tr>
</tbody>
</table>

Drilling JIS 10 K 10 (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>XLD 13 Wafer Style</th>
<th>XLD 13 Lug Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN 50</td>
<td>120 4 19 120 4 M16</td>
<td></td>
</tr>
<tr>
<td>DN 65</td>
<td>140 4 19 140 4 M16</td>
<td></td>
</tr>
<tr>
<td>DN 80</td>
<td>150 8 19 150 8 M16</td>
<td></td>
</tr>
<tr>
<td>DN 100</td>
<td>175 8 19 175 8 M16</td>
<td></td>
</tr>
<tr>
<td>DN 125</td>
<td>210 8 23 210 8 M20</td>
<td></td>
</tr>
<tr>
<td>DN 150</td>
<td>240 8 23 240 8 M20</td>
<td></td>
</tr>
<tr>
<td>DN 200</td>
<td>290 12 23 290 12 M20</td>
<td></td>
</tr>
<tr>
<td>DN 250</td>
<td>355 12 25 355 12 M22</td>
<td></td>
</tr>
<tr>
<td>DN 300</td>
<td>400 12+4 25/22 400 16 M22</td>
<td></td>
</tr>
<tr>
<td>DN 350</td>
<td>445 16 25 445 16 M22</td>
<td></td>
</tr>
<tr>
<td>DN 400</td>
<td>510 16 27 510 16 M24</td>
<td></td>
</tr>
<tr>
<td>DN 450</td>
<td>565 20 27 565 20 M24</td>
<td></td>
</tr>
<tr>
<td>DN 500</td>
<td>620 20 27 620 20 M24</td>
<td></td>
</tr>
<tr>
<td>DN 600</td>
<td>N/A N/A N/A - - -</td>
<td></td>
</tr>
</tbody>
</table>

Drilling ANSI Pressure Class 150 (in)

<table>
<thead>
<tr>
<th>Size</th>
<th>XLD 11 Wafer Style</th>
<th>XLD 21 Lug Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>4.75 4 0.75 4.75 4 5/8-11 UNC</td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>6.0 4 0.75 6.0 4 5/8-11 UNC</td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>7.5 8 0.75 7.5 8 5/8-11 UNC</td>
<td></td>
</tr>
<tr>
<td>5"</td>
<td>8.5 8 0.88 8.5 8 3/4-10 UNC</td>
<td></td>
</tr>
<tr>
<td>6"</td>
<td>9.5 8 0.88 9.5 8 3/4-10 UNC</td>
<td></td>
</tr>
<tr>
<td>8"</td>
<td>11.75 8 0.88 11.75 8 3/4-10 UNC</td>
<td></td>
</tr>
<tr>
<td>10"</td>
<td>14.25 12 1.0 14.25 12 7/8-9 UNC</td>
<td></td>
</tr>
<tr>
<td>12"</td>
<td>17.0 12 1.0 17.0 12 7/8-9 UNC</td>
<td></td>
</tr>
<tr>
<td>14"</td>
<td>18.75 12 1.13 18.75 12 1"-UNC</td>
<td></td>
</tr>
<tr>
<td>16"</td>
<td>21.25 16 1.13 21.25 16 1"-UNC</td>
<td></td>
</tr>
<tr>
<td>18"</td>
<td>22.75 16 1.25 22.75 16 1 1/8"-8UN</td>
<td></td>
</tr>
<tr>
<td>20"</td>
<td>25.0 20 1.25 25.0 20 1 1/8"-8UN</td>
<td></td>
</tr>
<tr>
<td>24"</td>
<td>29.5 20 1.37 29.5 20 1 1/4"-8UN</td>
<td></td>
</tr>
</tbody>
</table>

F: Hole Circle
G: Number of Holes/Threads
H: Diameter of Hole/Thread Dimension
Dimensions with Latching Lever

Lever design:
- **Lever**: ENJS 1049 (GGG 40.3); zinc - phosphate coated
- **Notch plate**: 1.4571
- **Screws**: A4 - 70
- **Nuts**: A4

Dimensions (mm) and Weight (kg)

<table>
<thead>
<tr>
<th>DN NPS</th>
<th>50</th>
<th>65</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>173</td>
<td>186</td>
<td>192</td>
<td>208</td>
<td>225</td>
<td>245</td>
<td>301</td>
</tr>
<tr>
<td>B</td>
<td>356</td>
<td>356</td>
<td>356</td>
<td>356</td>
<td>356</td>
<td>432</td>
<td>432</td>
</tr>
<tr>
<td>C</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>D</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>Weight</td>
<td>8.5</td>
<td>9</td>
<td>9.5</td>
<td>11.5</td>
<td>14</td>
<td>17.5</td>
<td>27.5</td>
</tr>
</tbody>
</table>
Gear design:
- Standard: Alu-Gear (aluminium-molded, chromed) Screws: A4-70;
- Wheel: EN 10025 (1.0038), powder coated

Dimensions (mm) and Weight (kg)

<table>
<thead>
<tr>
<th>DN NPS</th>
<th>50</th>
<th>65</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØE</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>203</td>
<td>203</td>
<td>203</td>
<td>203</td>
</tr>
<tr>
<td>F</td>
<td>38.5</td>
<td>38.5</td>
<td>38.5</td>
<td>38.5</td>
<td>38.5</td>
<td>46.5</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>G</td>
<td>188</td>
<td>201</td>
<td>207</td>
<td>223</td>
<td>241</td>
<td>260</td>
<td>289</td>
<td>314</td>
<td>401</td>
</tr>
<tr>
<td>H</td>
<td>163</td>
<td>173</td>
<td>179</td>
<td>196</td>
<td>211</td>
<td>228</td>
<td>257</td>
<td>283</td>
<td>369</td>
</tr>
<tr>
<td>J</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>180</td>
<td>205.5</td>
<td>205.5</td>
<td>205.5</td>
</tr>
<tr>
<td>Weight</td>
<td>8</td>
<td>8.5</td>
<td>9</td>
<td>11</td>
<td>13.5</td>
<td>17.5</td>
<td>29.3</td>
<td>36</td>
<td>58</td>
</tr>
</tbody>
</table>
Dimensions (mm) and Weight (inkl. MG)

<table>
<thead>
<tr>
<th>DN NPS</th>
<th>350 14</th>
<th>400 16</th>
<th>450 18</th>
<th>500 20</th>
<th>600 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØE</td>
<td>457</td>
<td>457</td>
<td>457</td>
<td>610</td>
<td>610</td>
</tr>
<tr>
<td>F</td>
<td>66.7</td>
<td>66.7</td>
<td>89.5</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>G</td>
<td>498</td>
<td>533</td>
<td>563.5</td>
<td>605.5</td>
<td>665.5</td>
</tr>
<tr>
<td>H</td>
<td>459</td>
<td>494</td>
<td>520</td>
<td>550</td>
<td>610</td>
</tr>
<tr>
<td>J</td>
<td>223</td>
<td>223</td>
<td>278</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td>Weight</td>
<td>115</td>
<td>140</td>
<td>195</td>
<td>238</td>
<td>341</td>
</tr>
</tbody>
</table>
Single acting pneumatic actuators

<table>
<thead>
<tr>
<th>DN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>H1</th>
<th>H2</th>
<th>H</th>
<th>Direct mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>143</td>
<td>360</td>
<td>128</td>
<td>213</td>
<td>133</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>80</td>
<td>143</td>
<td>360</td>
<td>128</td>
<td>232</td>
<td>152</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>100</td>
<td>143</td>
<td>360</td>
<td>128</td>
<td>248</td>
<td>168</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>125</td>
<td>143</td>
<td>360</td>
<td>128</td>
<td>265</td>
<td>185</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>150</td>
<td>181</td>
<td>387</td>
<td>173</td>
<td>279</td>
<td>199</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>200</td>
<td>259</td>
<td>517</td>
<td>231</td>
<td>318</td>
<td>N/A</td>
<td>90</td>
<td>No</td>
</tr>
<tr>
<td>250</td>
<td>259</td>
<td>517</td>
<td>231</td>
<td>344</td>
<td>N/A</td>
<td>90</td>
<td>No</td>
</tr>
<tr>
<td>300</td>
<td>259</td>
<td>517</td>
<td>231</td>
<td>430</td>
<td>N/A</td>
<td>90</td>
<td>No</td>
</tr>
</tbody>
</table>

DN65 NPS21/2 on request

These dimensions refer to standard pneumatic actuators with 4 bar pressure. Please be aware that these data can therefore only be used for general actuator sizing purposes within piping systems. Actuator sizing above DN 300 on request.
XLD valves offer economical solutions for the vast majority of chemical applications while maintaining the highest possible degree of performance in terms of in-line leakage and fugitive emissions.

XLD valves are commonly used within the following industries:

- Chlor-Alkali
- Industrial Inorganic Chemicals
- Metal and Mining
- Nitrogen and Phosphatic Fertilizers
- Petroleum Refining
- Pharmaceutical

Within these industries, XLD valves have superior performance in the following applications:

- Chlorine
- Benzene
- Bromine
- Sulfuric Acid
- Nitric Acid
- Hydrochloric Acid
- Phosphoric Acid
- Sea Water

CRANE ChemPharma & Energy, XOMOX® XLD Lined Butterfly Valve - Performance Chart

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>On / Off</th>
<th>Throttling</th>
<th>Diversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA TYPES</td>
<td>Clean Liquids & Gases</td>
<td>Dirty Liquids & Gases</td>
<td>Corrosive Liquids & Gases</td>
</tr>
<tr>
<td></td>
<td>Visous Liquids</td>
<td>Scaling Liquids & Slurries</td>
<td>Abrasive Slurries</td>
</tr>
<tr>
<td></td>
<td>Dry Materials</td>
<td>Vacuum Service</td>
<td>High Flow Capacity</td>
</tr>
<tr>
<td></td>
<td>Fugitive Emissions Control</td>
<td>Reduced Maintenance</td>
<td>Extended Service Life</td>
</tr>
<tr>
<td>APPLICATION REQUIREMENTS</td>
<td>Sizes 2”-24” DN50-DN600</td>
<td>Pressure Ratings Class 150 / PN 10 PN 20</td>
<td>High Temperature (ASME/EN) 200°C / 392°F</td>
</tr>
<tr>
<td></td>
<td>Low Temperature (ASME) -20°C / -4°F</td>
<td>Key Benefit Safety / Economy</td>
<td></td>
</tr>
</tbody>
</table>

Superior Performance

Limited Application

Not Applicable

Source: CRANE Engineering

Visit our website, www.cranecpe.com, to view these and other lined products, applications, brochures, certification, documents and more.